Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Comput Biol Med ; 145: 105509, 2022 06.
Article in English | MEDLINE | ID: covidwho-1778064

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing an outbreak of coronavirus disease 2019 (COVID-19), is a major threat to public health worldwide. Previous studies have shown that the spike protein of SARS-CoV-2 determines viral infectivity and major antigenicity. However, the spike protein has been undergoing various mutations, which bring a great challenge to the prevention and treatment of COVID-19. Here we present the MutCov, a pipeline for evaluating the effect of mutations in spike protein on infectivity and antigenicity of SARS-CoV-2 by calculating the binding free energy between spike protein and angiotensin-converting enzyme 2 (ACE2) or neutralizing monoclonal antibody (mAb). The predicted infectivity and antigenicity were highly consistent with biologically experimental results, and demonstrated that the MutCov achieved good prediction performance. In conclusion, the MutCov is of high importance for systematically evaluating the effect of novel mutations and improving the prevention and treatment of COVID-19. The source code and installation instruction of MutCov are freely available at http://jianglab.org.cn/MutCov.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , COVID-19/genetics , Humans , Mutation , Protein Binding , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
2.
Brief Bioinform ; 22(6)2021 11 05.
Article in English | MEDLINE | ID: covidwho-1367012

ABSTRACT

Accurate prediction of immunogenic peptide recognized by T cell receptor (TCR) can greatly benefit vaccine development and cancer immunotherapy. However, identifying immunogenic peptides accurately is still a huge challenge. Most of the antigen peptides predicted in silico fail to elicit immune responses in vivo without considering TCR as a key factor. This inevitably causes costly and time-consuming experimental validation test for predicted antigens. Therefore, it is necessary to develop novel computational methods for precisely and effectively predicting immunogenic peptide recognized by TCR. Here, we described DLpTCR, a multimodal ensemble deep learning framework for predicting the likelihood of interaction between single/paired chain(s) of TCR and peptide presented by major histocompatibility complex molecules. To investigate the generality and robustness of the proposed model, COVID-19 data and IEDB data were constructed for independent evaluation. The DLpTCR model exhibited high predictive power with area under the curve up to 0.91 on COVID-19 data while predicting the interaction between peptide and single TCR chain. Additionally, the DLpTCR model achieved the overall accuracy of 81.03% on IEDB data while predicting the interaction between peptide and paired TCR chains. The results demonstrate that DLpTCR has the ability to learn general interaction rules and generalize to antigen peptide recognition by TCR. A user-friendly webserver is available at http://jianglab.org.cn/DLpTCR/. Additionally, a stand-alone software package that can be downloaded from https://github.com/jiangBiolab/DLpTCR.


Subject(s)
COVID-19 Drug Treatment , Epitopes/immunology , Peptides/immunology , Receptors, Antigen, T-Cell/immunology , SARS-CoV-2/immunology , Amino Acid Sequence/genetics , COVID-19/genetics , COVID-19/immunology , COVID-19/virology , Computer Simulation , Deep Learning , Epitopes/genetics , Humans , Peptides/genetics , Peptides/therapeutic use , Protein Binding/genetics , Receptors, Antigen, T-Cell/genetics , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Software
3.
Front Cell Dev Biol ; 9: 697035, 2021.
Article in English | MEDLINE | ID: covidwho-1367745

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing an outbreak of coronavirus disease 2019 (COVID-19), has been undergoing various mutations. The analysis of the structural and energetic effects of mutations on protein-protein interactions between the receptor binding domain (RBD) of SARS-CoV-2 and angiotensin converting enzyme 2 (ACE2) or neutralizing monoclonal antibodies will be beneficial for epidemic surveillance, diagnosis, and optimization of neutralizing agents. According to the molecular dynamics simulation, a key mutation N439K in the SARS-CoV-2 RBD region created a new salt bridge with Glu329 of hACE2, which resulted in greater electrostatic complementarity, and created a weak salt bridge with Asp442 of RBD. Furthermore, the N439K-mutated RBD bound hACE2 with a higher affinity than wild-type, which may lead to more infectious. In addition, the N439K-mutated RBD was markedly resistant to the SARS-CoV-2 neutralizing antibody REGN10987, which may lead to the failure of neutralization. The results show consistent with the previous experimental conclusion and clarify the structural mechanism under affinity changes. Our methods will offer guidance on the assessment of the infection efficiency and antigenicity effect of continuing mutations in SARS-CoV-2.

4.
Genomics ; 113(2): 456-462, 2021 03.
Article in English | MEDLINE | ID: covidwho-989433

ABSTRACT

T-cell receptor (TCR) is crucial in T cell-mediated virus clearance. To date, TCR bias has been observed in various diseases. However, studies on the TCR repertoire of COVID-19 patients are lacking. Here, we used single-cell V(D)J sequencing to conduct comparative analyses of TCR repertoire between 12 COVID-19 patients and 6 healthy controls, as well as other virus-infected samples. We observed distinct T cell clonal expansion in COVID-19. Further analysis of VJ gene combination revealed 6 VJ pairs significantly increased, while 139 pairs significantly decreased in COVID-19 patients. When considering the VJ combination of α and ß chains at the same time, the combination with the highest frequency on COVID-19 was TRAV12-2-J27-TRBV7-9-J2-3. Besides, preferential usage of V and J gene segments was also observed in samples infected by different viruses. Our study provides novel insights on TCR in COVID-19, which contribute to our understanding of the immune response induced by SARS-CoV-2.


Subject(s)
COVID-19/genetics , High-Throughput Nucleotide Sequencing , Receptors, Antigen, T-Cell/genetics , SARS-CoV-2 , Single-Cell Analysis , COVID-19/immunology , Female , Humans , Male , T-Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL